Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How to interpret GBM results

Understanding why a model predicts a certain outcome is very important for several reasons, including trust, actionability, accountability, and debugging. Insights into the nonlinear relationship between features and the outcome uncovered by the model, as well as interactions among features, are also of value when the goal is to learn more about the underlying drivers of the phenomenon under study.

A common approach to gaining insights into the predictions made by tree ensemble methods, such as gradient boosting or random forest models, is to attribute feature importance values to each input variable. These feature importance values can be computed on an individual basis for a single prediction or globally for ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content