Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Objectives and loss functions

The libraries support several boosting algorithms, including gradient boosting for trees and linear base learners, as well as DART for LightGBM and XGBoost. LightGBM also supports the GOSS algorithm which we described previously, as well as random forests.

The appeal of gradient boosting consists of the efficient support of arbitrary differentiable loss functions and each library offers various options for regression, classification, and ranking tasks. In addition to the chosen loss function, additional evaluation metrics can be used to monitor performance during training and cross-validation.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content