Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How to train and tune GBM models

The two key drivers of gradient boosting performance are the size of the ensemble and the complexity of its constituent decision trees.

The control of complexity for decision trees aims to avoid learning highly specific rules that typically imply a very small number of samples in leaf nodes. We covered the most effective constraints used to limit the ability of a decision tree to overfit to the training data in the previous chapter. They include requiring:

  • A minimum number of samples to either split a node or accept it as a terminal node, or
  • A minimum improvement in node quality as measured by the purity or entropy or mean square error, in the case of regression.

In addition to directly controlling the size ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content