December 2018
Beginner to intermediate
684 pages
21h 9m
English
We can define a simplified version of LeNet5 that omits the original final layer containing radial basis functions as follows, using the default 'valid' padding and single step strides, unless defined otherwise:
lenet5 = Sequential([ Conv2D(filters=6, kernel_size=5, activation='relu', input_shape=(28, 28, 1), name='CONV1'), AveragePooling2D(pool_size=(2, 2), strides=(1, 1), padding='valid', name='POOL1'), Conv2D(filters=16, kernel_size=(5, 5), activation='tanh', name='CONV2'), AveragePooling2D(pool_size=(2, 2), strides=(2, 2), name='POOL2'), Conv2D(filters=120, kernel_size=(5, 5), activation='tanh', name='CONV3'), Flatten(name='FLAT'), Dense(units=84, activation='tanh', name='FC6'), Dense(units=10, activation='softmax', ...