Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Feature importance

There are three primary ways to compute global feature importance values:

  • Gain: This classic approach introduced by Leo Breiman in 1984 uses the total reduction of loss or impurity contributed by all splits for a given feature. The motivation is largely heuristic, but it is a commonly used method to select features.
  • Split count: This is an alternative approach that counts how often a feature is used to make a split decision, based on the selection of features for this purpose based on the resultant information gain.
  • Permutation: This approach randomly permutes the feature values in a test set and measures how much the model's error changes, assuming that an important feature should create a large increase in the prediction ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content