Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Shrinkage and learning rate

Shrinkage techniques apply a penalty for increased model complexity to the model's loss function. For boosting ensembles, shrinkage can be applied by scaling the contribution of each new ensemble member down by a factor between 0 and 1. This factor is called the learning rate of the boosting ensemble. Reducing the learning rate increases shrinkage because it lowers the contribution of each new decision tree to the ensemble.

The learning rate has the opposite effect of the ensemble size, which tends to increase for lower learning rates. Lower learning rates coupled with larger ensembles have been found to reduce the test error, in particular for regression and probability estimation. Large numbers of iterations ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content