Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Fast scalable GBM implementations

Over the last few years, several new gradient boosting implementations have used various innovations that accelerate training, improve resource efficiency, and allow the algorithm to scale to very large datasets. The new implementations and their sources are as follows:

  • XGBoost (extreme gradient boosting), started in 2014 by Tianqi Chen at the University of Washington
  • LightGBM, first released in January 2017, by Microsoft
  • CatBoost, first released in April 2017 by Yandex

These innovations address specific challenges of training a gradient boosting model (see this chapter's README on GitHub for detailed references). The XGBoost implementation was the first new implementation to gain popularity: among the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content