December 2018
Beginner to intermediate
684 pages
21h 9m
English
The mutual information (MI) between a feature and the outcome is a measure of the mutual dependence between the two variables. It extends the notion of correlation to nonlinear relationships. More specifically, it quantifies the information obtained about one random variable through the other random variable.
The concept of MI is closely related to the fundamental notion of entropy of a random variable. Entropy quantifies the amount of information contained in a random variable. Formally, the mutual information—I(X, Y)—of two random variables, X and Y, is defined as the following:

The sklearn ...