Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

LSTM and word embeddings for sentiment classification

RNNs are commonly applied to various natural language processing tasks. We've already encountered sentiment analysis using text data in part three of this book.

We are now going to illustrate how to apply an RNN model to text data to detect positive or negative sentiment (which can easily be extended to a finer-grained sentiment scale).

We are going to use word embeddings to represent the tokens in the documents. We covered word embeddings in Chapter 15, Word Embeddings. They are an excellent technique to convert text into a continuous vector representation such that the relative location of words in the latent space encodes useful semantic aspects based on the words' usage in context. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content