Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Value function approximation with neural networks

Continuous state and/or action spaces imply an infinite number of transitions that make it impossible to tabulate the state-action values, as in the previous section. Instead, we approximate the Q function by learning a continuous, parameterized mapping from training samples.

Motivated by the success of neural networks in other domains that we discussed in the previous chapters in part 4, deep neural networks have also become popular for approximating value functions. However, ML faces distinct challenges in the RL context where the data is generated by the interaction of the model with the environment using a (possibly randomized) policy:

  • With continuous states, the agent will fail to visit ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content