Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Nonlinear dimensionality reduction

A traditional use case includes dimensionality reduction, achieved by limiting the size of the hidden layer so that it performs lossy compression. Such an autoencoder is called undercomplete and the purpose is to force it to learn the most salient properties of the data by minimizing a loss function, L, of the following form:

An example loss function that we will explore in the next section is simply the Mean Squared Error (MSE) evaluated on the pixel values of the input images and their reconstruction.

The appeal of autoencoders, when compared to linear dimensionality-reduction methods, such as Principal ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content