Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How autoencoders work

In Chapter 16, Deep Learning, we saw that neural networks are successful at supervised learning by extracting a hierarchical feature representation that's useful for the given task. CNNs, for example, learn and synthesize increasingly complex patterns useful for identifying or detecting objects in an image.

An autoencoder, in contrast, is a neural network designed exclusively to learn a new representation, that is, an encoding of the input. To this end, the training forces the network to faithfully reproduce the input. Since autoencoders typically use the same data as input and output, they are also considered an instance of self-supervised learning.

In the process, the parameters of a hidden layer, h, become the code ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content