Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Regression problems

Regression problems aim to predict a continuous variable. The root-mean-square error (RMSE) is the most popular loss function and error metric, not least because it is differentiable. The loss is symmetric, but larger errors weigh more in the calculation. Using the square root has the advantage of measuring the error in the units of the target variable. The same metric in combination with the RMSE log of the error (RMSLE) is appropriate when the target is subject to exponential growth because of its asymmetric penalty that weights negative errors less than positive errors. You can also log-transform the target first and then use the RMSE, as we do in the example later in this section.

The mean absolute errors (MAE) and ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content