Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Separating signal and noise – how to use alphalens

Quantopian has open sourced the Python library, alphalens, for the performance analysis of predictive stock factors that integrates well with the backtesting library zipline and the portfolio performance and risk analysis library pyfolio that we will explore in the next chapter.

alphalens facilitates the analysis of the predictive power of alpha factors concerning the:

  • Correlation of the signals with subsequent returns
  • Profitability of an equal or factor-weighted portfolio based on a (subset of) the signals
  • Turnover of factors to indicate the potential trading costs
  • Factor-performance during specific events
  • Breakdowns of the preceding by sector

The analysis can be conducted using tearsheets ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content