Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

SHapley Additive exPlanations

At the 2017 NIPS conference, Scott Lundberg and Su-In Lee from the University of Washington presented a new and more accurate approach to explaining the contribution of individual features to the output of tree ensemble models called SHapley Additive exPlanations, or SHAP values.

This new algorithm departs from the observation that feature-attribution methods for tree ensembles, such as the ones we looked at earlier, are inconsistent—that is, a change in a model that increases the impact of a feature on the output can lower the importance values for this feature (see the references on GitHub for detailed illustrations of this).

SHAP values unify ideas from collaborative game theory and local explanations, and ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content