Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Hierarchical clustering

Hierarchical clustering avoids the need to specify a target number of clusters because it assumes that data can successively be merged into increasingly dissimilar clusters. It does not pursue a global objective but decides incrementally how to produce a sequence of nested clusters that range from a single cluster to clusters consisting of the individual data points.

There are two approaches:

  1. Agglomerative clustering proceeds bottom-up, sequentially merging two of the remaining groups based on similarity
  2. Divisive clustering works top-down and sequentially splits the remaining clusters to produce the most distinct subgroups

Both groups produce N-1 hierarchical levels and facilitate the selection of a clustering at ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content