Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Gradient Boosting Machines

In the previous chapter, we learned about how random forests improve the predictions made by individual decision trees by combining them into an ensemble that reduces the high variance of individual trees. Random forests use bagging, which is short for bootstrap aggregation, to introduce random elements into the process of growing individual trees.

More specifically, bagging draws samples from the data with replacement so that each tree is trained on a different but equal-sized random subset of the data (with some observations repeating). Random forests also randomly select a subset of the features so that both the rows and the columns of the data that are used to train each tree are random versions of the original ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content