December 2018
Beginner to intermediate
684 pages
21h 9m
English
To prepare for the training of our network, we create a function that combines the preceding gradient definition and computes the relevant weight and bias updates from the training data and labels, and the current weight and bias values, as follows:
def compute_gradients(X, y_true, w_h, b_h, w_o, b_o): """Evaluate gradients for parameter updates""" # Compute hidden and output layer activations hidden_activations = hidden_layer(X, w_h, b_h) y_hat = output_layer(hidden_activations, w_o, b_o) # Compute the output layer gradients loss_grad = loss_gradient(y_hat, y_true) out_weight_grad = output_weight_gradient(hidden_activations, loss_grad) out_bias_grad = output_bias_gradient(loss_grad) # Compute the hidden layer gradients ...