December 2018
Beginner to intermediate
684 pages
21h 9m
English
We compile the model to use the Adam optimizer (see Chapter 16, Deep Learning) to minimize the MSE between the input data and the reproduction achieved by the autoencoder. To ensure that the autoencoder learns to reproduce the input, we train the model using the same input and output data:
autoencoder.compile(optimizer='adam', loss='mse')autoencoder.fit(x=X_train_scaled, y=X_train_scaled, epochs=100, batch_size=32, shuffle=True, validation_split=.1, callbacks=[tb_callback, early_stopping, checkpointer])