Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Word vectors from SEC filings using gensim

In this section, we will learn word and phrase vectors from annual US Securities and Exchange Commission (SEC) filings using gensim to illustrate the potential value of word embeddings for algorithmic trading. In the following sections, we will combine these vectors as features with price returns to train neural networks to predict equity prices from the content of security filings.

In particular, we use a dataset containing over 22,000 10-K annual reports from the period 2013-2016 that are filed by listed companies and contain both financial information and management commentary (see Chapter 3, Alternative Data for Finance). For about half of the 11-K filings for companies, we have stock prices ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content