Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Simplified split-finding algorithms

The gradient boosting implementation by sklearn finds the optimal split that enumerates all options for continuous features. This precise greedy algorithm is computationally very demanding because it must first sort the data by feature values before scoring the potentially very large number of split options and making a decision. This approach faces challenges when the data does not fit in memory or when training in a distributed setting on multiple machines.

An approximate split-finding algorithm reduces the number of split points by assigning feature values to a user-determined set of bins, which can also greatly reduce the memory requirements during training because only a single split needs to be stored ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content