Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How to use PyTorch 1.0

PyTorch has been developed at the Facebook AI research group led by Yann LeCunn and the first alpha version was released in September 2016. It provides deep integration with Python libraries such as NumPy that can be used to extend its functionality, strong GPU acceleration, and automatic differentiation using its autograd system. It provides more granular control than Keras through a lower-level API and is mainly used as a deep learning research platform but can also replace NumPy while enabling GPU computation.

It employs eager execution, in contrast to the static computation graphs used by, for example, Theano or TensorFlow. Rather than initially defining and compiling a network for fast but static execution, it ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content