Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Implementing momentum updates using Python

To incorporate momentum into the parameter updates, define an update_momentum function that combines the results of the preceding compute_gradients function with the most recent momentum updates as follows for each parameter matrix:

def update_momentum(X, y_true, param_list, Ms, momentum_term, eta):    """Compute updates with momentum."""    gradients = compute_gradients(X, y_true, *param_list)    return [momentum_term * momentum - eta * grads            for momentum, grads in zip(Ms, gradients)]

The update_params function performs the actual updates:

def update_params(param_list, Ms):    """Update the parameters."""    return [P + M for P, M in zip(param_list, Ms)]
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content