Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Regularizing tick data

The trade data is indexed by nanoseconds and is very noisy. The bid-ask bounce, for instance, causes the price to oscillate between the bid and ask prices when trade initiation alternates between buy and sell market orders. To improve the noise-signal ratio and improve the statistical properties, we need to resample and regularize the tick data by aggregating the trading activity.

We typically collect the open (first), low, high, and closing (last) price for the aggregated period, alongside the volume-weighted average price (VWAP), the number of shares traded, and the timestamp associated with the data.

See the normalize_tick_data.ipynb notebook in the folder for this chapter on GitHub for additional detail.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content