Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

How to summarize SHAP values by feature

To get a high-level overview of the feature importance across a number of samples, there are two ways to plot the SHAP values: a simple average across all samples that resembles the global feature-importance measures computed previously (as shown in the left-hand panel of the following screenshot), or a scatter graph to display the impact of every feature for every sample (as shown in the right-hand panel of the following screenshot). They are very straightforward to produce using a trained model of a compatible library and matching input data, as shown in the following code:

# load JS visualization code to notebookshap.initjs()# explain the model's predictions using SHAP valuesexplainer = shap.TreeExplainer(model) ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content