Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Second-order loss function approximation

The most important algorithmic innovations lower the cost of evaluating the loss function by using approximations that rely on second-order derivatives, resembling Newton's method to find stationary points. As a result, scoring potential splits during greedy tree expansion is faster relative to using the full loss function.

As mentioned previously, a gradient boosting model is trained in an incremental manner with the goal of minimizing the combination of the prediction error and the regularization penalty for the ensemble HM. Denoting the prediction of the outcome yi by the ensemble after step m as ŷi(m), l as a differentiable convex loss function that measures the difference between the outcome and ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content