Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Hierarchical risk parity

Mean-variance optimization is very sensitive to the estimates of expected returns and the covariance of these returns. The covariance matrix inversion also becomes more challenging and less accurate when returns are highly correlated, as is often the case in practice. The result has been called the Markowitz curse: when diversification is more important because investments are correlated, conventional portfolio optimizers will likely produce an unstable solution. The benefits of diversification can be more than offset by mistaken estimates. As discussed, even naive, equally-weighted portfolios can beat mean-variance and risk-based optimization out of sample.

More robust approaches have incorporated additional constraints ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content