Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Word Embeddings

In the two previous chapters, we applied the bag-of-words model to convert text data into a numerical format. The results were sparse, fixed-length vectors that represent documents in a high-dimensional word space. This allows evaluating the similarity of documents and creates features to train a machine learning algorithm and classify a document's content or rate the sentiment expressed in it. However, these vectors ignore the context in which a term is used so that, for example, a different sentence containing the same words would be encoded by the same vector.

In this chapter, we will introduce an alternative class of algorithms that use neural networks to learn a vector representation of individual semantic units such ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content