Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Sequence-to-sequence autoencoders

RNNs (see Chapter 18, Recurrent Neural Networks) have been developed to take into account the dynamics and dependencies over potentially long ranges often found in sequential data. Similarly, sequence-to-sequence autoencoders aim to learn representations attuned to the nature of data generated in sequence.

Sequence-to-sequence autoencoders are based on RNN components, such as Long Short-Term Memory (LSTM) or Gated Recurrent Units (GRUs). They learn a compressed representation of sequential data and have been applied to video, text, audio, and time-series data.

As mentioned in the last chapter, encoder-decoder architectures allow RNNs to process input and output sequences of variable lengths. These architectures ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content