Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

From linear algebra to hierarchical probabilistic models

Initial attempts by topic models to improve on the vector space model (developed in the mid-1970s) applied linear algebra to reduce the dimensionality of the document-term matrix. This approach is similar to the algorithm we discussed as principal component analysis in Chapter 12, Unsupervised Learning, on unsupervised learning. While effective, it is difficult to evaluate the results of these models absent a benchmark model.

In response, probabilistic models emerged that assume an explicit document generation process and provide algorithms to reverse engineer this process and recover the underlying topics.

This table highlights key milestones in the model evolution that we will address ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content