Skip to Content
Hands-On Machine Learning for Algorithmic Trading
book

Hands-On Machine Learning for Algorithmic Trading

by Stefan Jansen
December 2018
Beginner to intermediate
684 pages
21h 9m
English
Packt Publishing
Content preview from Hands-On Machine Learning for Algorithmic Trading

Probabilistic programming with PyMC3

Probabilistic programming provides a language to describe and fit probability distributions so that we can design, encode, and automatically estimate and evaluate complex models. It aims to abstract away some of the computational and analytical complexity to allow us to focus on the conceptually more straightforward and intuitive aspects of Bayesian reasoning and inference.

The field has become quite dynamic since new languages emerged. Uber open sourced Pyro (based on PyTorch) and Google recently added a probability module to TensorFlow (see the resources linked on GitHub).

As a result, the practical relevance and use of Bayesian methods in machine learning will likely increase to generate insights into ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning for Algorithmic Trading - Second Edition

Machine Learning for Algorithmic Trading - Second Edition

Stefan Jansen

Publisher Resources

ISBN: 9781789346411Supplemental Content